Here, we report the development of a novel polymer composite (PC) purification column and kit. The performance of the PC columns was compared to conventional silica gel (SG) columns for the purification of nucleic acids from coronaviruses, including SARS-CoV-2, in 82 clinical samples. The results shows that PC-based purification outperforms silica gel (SG)-based purification by enabling a higher sensitivity (94%), accuracy (97%), and by eliminating false positives (100% specificity). The high specificity is critical for efficient patient triage and resource management during pandemics. Furthermore, PC-based purification exhibits three times higher analytical precision than a commonly used SG-based nucleic acid purification thereby enabling a more accurate quantification of viral loads and higher reproducibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784286PMC
http://dx.doi.org/10.1038/s41598-024-51671-xDOI Listing

Publication Analysis

Top Keywords

polymer composite
8
nucleic acid
8
acid purification
8
silica gel
8
pc-based purification
8
purification enabling
8
purification
7
high-performance polymer
4
composite column
4
column coronavirus
4

Similar Publications

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Advanced materials are crucial for enhancing soldier safety through improved personal body armor. In contrast to conventional Kevlar-epoxy composites, this study examines the ballistic performance of a unique ECO-UHMWPE (Ultra-High Molecular Weight Polyethylene) vest. The aim is to achieve a lightweight design with superior impact resistance, addressing limitations of the current armor used by the Ethiopian Defense Force.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.

View Article and Find Full Text PDF

The role of aging and various surface preparation methods in the repair of nanohybrid composites.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Restorative Dentistry, Gazi University, Bişkek St. 1. St. Number: 8 Emek, Ankara, Turkey.

Background: Repairing composite resins is a less invasive alternative to complete restoration replacement. To achieve a successful bond between the existing and newly applied composite materials, various surface preparation methods, such as sandblasting and acid etching, have been explored. The aim of the study was to evaluate the effect of different surface treatments on the repair bond strength of a universal nanohybrid composite resin restorative material before and after thermal aging, by utilizing a micro-shear bond strength (µSBS) test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!