ESPO-G6-R2 v1.0 is a set of statistically downscaled and bias-adjusted climate simulations based on the Coupled Model Intercomparison Project 6 (CMIP6) models. The dataset is composed of daily timeseries of three variables: daily maximum temperature, daily minimum temperature and daily precipitation. Data are available from 1950 to 2100 over North America. The simulation ensemble is comprised of 14 models driven by two emissions scenarios (SSP2-4.5 and SSP3-7.0). In this paper, we describe the workflow used for the bias-adjustment, which relies on the detrended quantile mapping method and the Regional Deterministic Reforecast System (RDRS) v2.1 reference dataset. Using the framework defined in the VALUE project, we show the improvements made by the bias-adjustment on marginal, temporal and multivariate aspects of the data. We also verify that the bias-adjusted climate data have similar climate change signal to the original climate model simulations. Finally, we provide guidance to users on how to use this dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784550 | PMC |
http://dx.doi.org/10.1038/s41597-023-02855-z | DOI Listing |
In July 2022 southeast England experienced a record breaking heatwave and unprecedented wildfires in urban areas. We investigate fire weather trends since 1960 in southeast England using a large ensemble of initialised climate models. Record smashing temperatures coincided with widespread fires in London, and we find that while wildfire risk was high, it was not record breaking.
View Article and Find Full Text PDFThe damaging effects of changing climate on farm-household food security are steadily increasing in sub-Saharan Africa. Adaptation strategies are important for agrarian households to reduce the adverse effects on their food security. This study employed multivariate probit and endogenous switching regression models to analyze the determinants of farm households' choice of climate-change adaptation strategies, such as the cultivation of early maturing crops, early planting, growing drought-tolerant maize varieties, using precautionary savings, practicing income diversification, and sale of assets, and their effects on household food security in Tanzania.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA.
Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non-native species using ecological niche models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!