This study addresses the challenge of designing simple and environmentally friendly methods for the preparation of effective electromagnetic wave (EMW) absorbing materials with tailored microstructures and multi-component regulation. N, O doped walnut-like porous carbon composite microspheres loaded with FeCo nanoparticles (WPCM/Fe-Co) are synthesized through high-temperature carbonization combined with soap-free emulsion polymerization and hydrothermal methods, avoiding the use of toxic solvents and complex conditions. The incorporation of magnetic components enhances magnetic loss, complementing dielectric loss to optimize EMW attenuation. The unique walnut-like morphology further improves impedance matching. The proportions of Fe and Co components can be adjusted to regulate the material's reflection loss, thickness, and bandwidth, allowing for fine-tuning of absorption performance. At a low filling ratio (16.7%), the optimal WPCM/Fe-Co composites exhibit a minimum reflection loss (RL) of -48.34 dB (10.33 GHz, 3.0 mm) and an overall effective absorbing bandwidth (EAB) covering the entire C bands, X bands, and Ku bands. This work introduces a novel approach to composition regulation and presents a green synthesis method for magnetic carbon composite absorbers with high-performance EMW absorption at low loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202308585 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada.
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).
View Article and Find Full Text PDFNat Food
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!