Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The evaluation of biomarkers by molecular techniques and immunohistochemistry has become increasingly relevant to the treatment of female genital tract tumours as a consequence of the greater availability of therapeutic options and updated disease classifications. For ovarian cancer, mutation testing for BRCA1/2 is the standard predictive biomarker for poly(ADP-ribose) polymerase inhibitor therapy, while homologous recombination deficiency testing may allow the identification of eligible patients among cases without demonstrable BRCA1/2 mutations. Clinical recommendations are available which specify how these predictive biomarkers should be applied. Mismatch repair (MMR) protein and folate receptor alpha immunohistochemistry may also be used to guide treatment in ovarian cancer. In endometrial cancer, MMR immunohistochemistry is the preferred test for predicting benefit from immune checkpoint inhibitor (ICI) therapy, but molecular testing for microsatellite instability may have a supplementary role. HER2 testing by immunohistochemistry and in situ hybridisation is applicable to endometrial serous carcinomas to assess trastuzumab eligibility. Immunohistochemistry for oestrogen receptor and progesterone receptor expression may be used for prognostication in endometrial cancer, but its predictive value for hormonal therapy is not yet proven. POLE mutation testing and p53 immunohistochemistry (as a surrogate for TP53 mutation status) serve as prognostic markers for favourable and adverse outcomes, respectively, in endometrial cancer, especially when combined with MMR testing for molecular subtype designation. For cervical cancer, programmed death ligand 1 immunohistochemistry may be used to predict benefit from ICI therapy although its predictive value is under debate. In vulvar cancer, p16 and p53 immunohistochemistry has established prognostic value, stratifying patients into three groups based on the human papillomavirus and TP53 mutation status of the tumour. Awareness of the variety and pitfalls of expression patterns for p16 and p53 in vulvar carcinomas is crucial for accurate designation. It is hoped that collaborative efforts in standardising and optimising biomarker testing for gynaecological tumours will contribute to evidence-based therapeutic decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pathol.2023.10.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!