The therapeutic effects of marine sulfated polysaccharides on diabetic nephropathy.

Int J Biol Macromol

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China. Electronic address:

Published: March 2024

AI Article Synopsis

  • Marine sulfated polysaccharides (MSPs) are natural compounds found in marine organisms, known for their sulfate groups and diverse biological activities, including anticoagulation and tumor suppression.
  • MSPs have structural similarities to heparan sulfate, which has led to extensive research on their potential use in treating diabetic nephropathy (DN), demonstrating effectiveness in both lab studies and live models.
  • The paper reviews the anti-DN properties of MSPs, exploring their mechanisms and the relationship between their structure and biological activity, aiming to present MSPs as viable treatments for DN.

Article Abstract

Marine sulfated polysaccharide (MSP) is a natural high molecular polysaccharide containing sulfate groups, which widely exists in various marine organisms. The sources determine structural variabilities of MSPs which have high security and wide biological activities, such as anticoagulation, antitumor, antivirus, immune regulation, regulation of glucose and lipid metabolism, antioxidant, etc. Due to the structural similarities between MSP and endogenous heparan sulfate, a majority of studies have shown that MSP can be used to treat diabetic nephropathy (DN) in vivo and in vitro. In this paper, we reviewed the anti-DN activities, the dominant mechanisms and structure-activity relationship of MSPs in order to provide the overall scene of MSPs as a modality of treating DN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129269DOI Listing

Publication Analysis

Top Keywords

marine sulfated
8
diabetic nephropathy
8
therapeutic effects
4
effects marine
4
sulfated polysaccharides
4
polysaccharides diabetic
4
nephropathy marine
4
sulfated polysaccharide
4
polysaccharide msp
4
msp natural
4

Similar Publications

Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.

View Article and Find Full Text PDF

Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

Novel peptides based on sea squirt as biocide enhancers to mitigate biocorrosion of EH36 steel.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Microbiologically influenced corrosion (MIC) affects offshore production activities severely. Although adding biocides is a simple method, it can cause environmental damage over time. Using green biocide enhancers is a viable strategy to reduce the amount of biocides.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants with a widespread presence in diverse environmental contexts. Transformation processes of PAHs via degradation and biotransformation have parallels in humans, animals, plants, fungi, and bacteria. Mapping the transformation products of PAHs is therefore crucial for assessing their toxicological impact and developing effective monitoring strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!