Objective: Severe congenital aortic valve pathology in the growing patient remains a challenging clinical scenario. Bicuspidization of the diseased aortic valve has proven to be a promising repair technique with acceptable durability. However, most understanding of the procedure is empirical and retrospective. This work seeks to design the optimal gross morphology associated with surgical bicuspidization with simulations based on the hypothesis that modifications to the free edge length cause or relieve stenosis.
Methods: Model bicuspid valves were constructed with varying free edge lengths and gross morphology. Fluid-structure interaction simulations were conducted in a single patient-specific model geometry. The models were evaluated for primary targets of stenosis and regurgitation. Secondary targets were assessed and included qualitative hemodynamics, geometric height, effective height, orifice area, and billow.
Results: Stenosis decreased with increasing free edge length and was pronounced with free edge length less than or equal to 1.3 times the annular diameter d. With free edge length 1.5d or greater, no stenosis occurred. All models were free of regurgitation. Substantial billow occurred with free edge length 1.7d or greater.
Conclusions: Free edge length 1.5d or greater was required to avoid aortic stenosis in simulations. Cases with free edge length 1.7d or greater showed excessive billow and other changes in gross morphology. Cases with free edge length 1.5d to 1.6d have a total free edge length approximately equal to the annular circumference and appeared optimal. These effects should be studied in vitro and in animal studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtcvs.2023.12.027 | DOI Listing |
This Letter discusses the limitations of immersion-free recording schemes for holographic waveguide displays. Traditional holographic recording of waveguides requires recording angles exceeding the critical angle of the hologram-cladding interface. Achieving these angles necessitates edge-lit exposure using prisms and immersion liquids, which are challenging for roll-to-roll mass production and hinder widespread adoption.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.
Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Solu Healthcare Oy, Kalevankatu 31 A 13, 00100, Helsinki, Finland.
Background: Genomic surveillance is extensively used for tracking public health outbreaks and healthcare-associated pathogens. Despite advancements in bioinformatics pipelines, there are still significant challenges in terms of infrastructure, expertise, and security when it comes to continuous surveillance. The existing pipelines often require the user to set up and manage their own infrastructure and are not designed for continuous surveillance that demands integration of new and regularly generated sequencing data with previous analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!