Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner.

Metabolism

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China. Electronic address:

Published: March 2024

AI Article Synopsis

  • ZNF638 plays a significant role in regulating triglyceride metabolism, especially in female mice, by influencing lipid absorption and enzyme activity after refeeding.
  • The study involved creating ZNF638 knockout mice and manipulating ZNF638 levels in adipose tissue to observe effects on body weight, serum triglycerides, and metabolic function.
  • Findings indicated that ZNF638 counteracts the elevation of serum triglycerides caused by refeeding, potentially by repressing genes like Angptl8, which is linked to lipid metabolism.

Article Abstract

Background And Aim: Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice.

Methods: We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis.

Results: Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis.

Conclusion: We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2024.155784DOI Listing

Publication Analysis

Top Keywords

znf638 fko
20
znf638
17
adipose tissue
16
fko mice
16
zinc finger
12
finger protein
12
triglyceride metabolism
12
mice
11
metabolism angptl8
8
estrogen dependent
8

Similar Publications

Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner.

Metabolism

March 2024

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China. Electronic address:

Article Synopsis
  • ZNF638 plays a significant role in regulating triglyceride metabolism, especially in female mice, by influencing lipid absorption and enzyme activity after refeeding.
  • The study involved creating ZNF638 knockout mice and manipulating ZNF638 levels in adipose tissue to observe effects on body weight, serum triglycerides, and metabolic function.
  • Findings indicated that ZNF638 counteracts the elevation of serum triglycerides caused by refeeding, potentially by repressing genes like Angptl8, which is linked to lipid metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!