Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution. The location of the peptides in micelles and bicelles has been studied by paramagnetic relaxation enhancement experiments with paramagnetic tagged 5- and 16-doxyl stearic acid (5-/16-SASL). Molecular dynamics simulations of multiple copies of the peptides were used to obtain an atomic level of detail on membrane-peptide and peptide-peptide interactions. Our results highlight an essential role of the negatively charged membrane mimetic in the structural stability of both myxinidin and WMR. The peptides localize predominantly in the membrane's headgroup region and have a noticeable membrane thinning effect on the overall bilayer structure. Myxinidin and WMR show a different tendency to self-aggregate, which is also influenced by the membrane composition (DOPE/DOPG versus DOPE/DOPG/CL) and can be related to the previously observed difference in the ability of the peptides to disrupt different types of model membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2024.184272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!