A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of per- and polyfluoroalkyl substances from wastewater via aerosol capture. | LitMetric

Removal of per- and polyfluoroalkyl substances from wastewater via aerosol capture.

J Hazard Mater

CDM Smith, 110 Fieldcrest Avenue, #8, 6th Floor, Edison, NJ 08837, United States.

Published: March 2024

The widespread use of per- and polyfluoroalkyl substances (PFAS)-containing products in numerous commercial and industrial applications has resulted in their occurrence in wastewater treatment plants (WWTPs). Herein, proof-of-concept bench-scale experiments were performed to measure the extent to which PFAS could be removed from a WWTP if aerosols generated during aeration were captured. Experiments were designed to mimic the aeration rate:water volume ratio, the water volume:surface area ratio, and aeration bubble size applicable to the full-scale aeration vessel. Results showed that substantial (75%) removal of perfluorooctane sulfonate (PFOS) was observed under these operating conditions in the bench-scale system; up to 97% PFOS removal was observed if the aeration rate was increased 3-fold. PFAS removal generally increased with increasing aerosol capture and with increasing PFAS surface activity. Analysis of semi-quantified PFAS showed that the semi-quantified PFAS accounted for approximately 93% of the identified PFAS in the raw wastewater, dominated largely by the presence of 2:2 fluorotelomer carboxylic acid (2:2 FTCA). This preliminary study suggests that aerosol capture in aeration basins has potential for mitigating PFAS in WWTPs. Further testing is needed to assess the feasibility of this approach at the field scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133460DOI Listing

Publication Analysis

Top Keywords

aerosol capture
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
semi-quantified pfas
8
pfas
7
aeration
6
removal
4
removal per-
4
substances wastewater
4
wastewater aerosol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!