Microplastics (MPs) commonly coexist with other contaminants and alter their toxicity. Perfluorooctanoic acid (PFOA), an emerging pollutant, may interact with MPs but remain largely unknown about the joint toxicity of PFOA and MPs. Hence, this research explored the single and joint effects of PFOA and polystyrene microplastics (PS-MPs) on microalgae (Chlorella sorokiniana) at the cellular and molecular levels. Results demonstrated that PS-MPs increased PFOA bioavailability by altering cell membrane permeability, thus aggravating biotoxicity (synergistic effect). Meanwhile, the defense mechanisms (antioxidant system modulation and extracellular polymeric substances secretion) of Chlorella sorokiniana were activated to alleviate toxicity. Additionally, transcriptomic analysis illustrated that co-exposure had more differential expression genes (DEGs; 4379 DEGs) than single-exposure (PFOA: 2533 DEGs; PS-MPs: 492 DEGs), which were mainly distributed in the GO terms associated with the membrane composition and antioxidant system. The molecular regulatory network further revealed that PS-MPs and PFOA primarily regulated the response mechanisms of Chlorella sorokiniana by altering the ribosome biogenesis, photosynthesis, citrate cycle, oxidative stress, and antioxidant system (antioxidant enzyme, glutathione-ascorbate cycle). These findings elucidated that PS-MPs enhanced the effect of PFOA, providing new insights into the influences of MPs and PFOA on algae and the risk assessment of multiple contaminants. ENVIRONMENTAL IMPLICATION: MPs and PFAS, emerging contaminants, are difficult to degrade and pose a non-negligible threat to organisms. Co-pollution of MPs and PFAS is ubiquitous in the aquatic environment, while risks of co-existence to organisms remain unknown. The present study revealed the toxicity and defense mechanisms of microalgae exposure to PS-MPs and PFOA from cellular and molecular levels. According to biochemical and transcriptomic analyses, PS-MPs increased PFOA bioavailability and enhanced the effect of PFOA on Chlorella sorokiniana, showing a synergistic effect. This research provides a basis for assessing the eco-environmental risks of MPs and PFAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133455 | DOI Listing |
Sci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFBio Protoc
December 2024
School of Bioengineering, Dalian University of Technology, Dalian, China.
Cryo-electron microscopy (cryo-EM) is a powerful technique capable of investigating samples in a hydrated state, compared to conventional high-vacuum electron microscopy that requires samples to be completely dry. During the drying process, numerous features and details may be lost due to damage caused by dehydration. Cryo-EM circumvents these problems by cryo-fixing the samples, thereby retaining the intact and original features of hydrated samples.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFWater Res
December 2024
Faculty of Applied Science, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
In this research, a sustainable blue-green infrastructure (BGI) was developed to efficiently remove contaminants from stormwater through a combined use of modified porous asphalt (PA) and microalgae cultivation to provide a potential drinking water (DW) source. According to the results, the modified PA with powder activated carbon (PAC) could successfully reduce the level of total suspended solids (TSS), turbidity, polycyclic aromatic hydrocarbons (PAHs), oil and grease to below the DW standards but failed to efficiently remove some heavy metals (HMs) and nutrient pollutants. The results revealed that the treated stormwater was an appropriate medium for microalgae cultivation.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
The sustainable treatment of petroleum-derived produced water (PW), a significant byproduct of oil and gas extraction, presents a persistent problem due to the presence of organic pollutants. This study examines the potential of the microalga Chlorella sorokiniana (C. sorokiniana) for the bioremediation of dissolved organic pollutants in PW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!