Developmental effects of zebrafish (Danio rerio) embryos after exposure to glyphosate and lead mixtures.

Ecotoxicol Environ Saf

Department of Environmental Science, Baylor University, Waco, TX, USA. Electronic address:

Published: February 2024

Natural aquatic environments have a heterogeneous composition; therefore, simultaneous exposure to multiple contaminants is relevant and more realistic when assessing exposure and toxicity. This study examines the combinatorial effects of two compounds found ubiquitously in drinking water across the United States: glyphosate and lead acetate. Zebrafish (Danio rerio) embryos were used as a model for investigating developmental delays following controlled exposures. Six different environmentally relevant exposure concentrations of glyphosate, ranging from 0.001 to 10 ppm, and lead acetate, ranging from 0.5 to 4 ppm, were applied first as single exposures and then as co-exposures. The sublethal endpoints of hatching and coagulation were quantified to determine potencies. Results indicate that higher concentrations of the individual chemicals correlate with later hatching with correlation coefficients of 0.71 and 0.40 for glyphosate and lead acetate respectively, while the co-exposure at lower concentrations induced earlier hatching with a correlation coefficient 0.74. In addition, increased levels of coagulation and glutathione reductase activity were observed following co-exposure, as compared to the individual exposures, suggesting potential toxicological interactions. These results support the need for further work assessing the combined potencies of aquatic contaminants rather than individual exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115886DOI Listing

Publication Analysis

Top Keywords

glyphosate lead
12
lead acetate
12
zebrafish danio
8
danio rerio
8
rerio embryos
8
hatching correlation
8
individual exposures
8
developmental effects
4
effects zebrafish
4
exposure
4

Similar Publications

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

A near-infrared multifunctional fluorescent bio-probe with large stokes shift and high quantum yield for effective determination of heavy metal lead and pesticide glyphosate in vitro and vivo.

J Hazard Mater

December 2024

Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.

View Article and Find Full Text PDF

Studies have shown the presence of residual amounts of the herbicide glyphosate in poultry feed, which leads to its bioaccumulation in the body. Recently, it has been established that exposure to low levels of glyphosate over a long period may have serious negative effects on poultry health. Moreover, combined exposure to several toxicants can potentially lead to additive and/or synergistic effects.

View Article and Find Full Text PDF

Herbicidal interference: glyphosate drives both the ecology and evolution of plant-herbivore interactions.

New Phytol

January 2025

Department of Ecology and Evolutionary Biology, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA.

The coevolution of plants and their insect herbivores reflects eco-evolutionary dynamics at work - ecological interactions influence adaptive traits, which feed back to shape the broader ecological community. However, novel anthropogenic stressors like herbicide, which are strong selective agents, can disrupt these dynamics. Little is known about how the evolution of herbicide resistance may impact plant-herbivore interactions.

View Article and Find Full Text PDF

Safety assessment approaches of novel food, currently adopted in the Russian Federation, imply mandatory in vivo reproductive toxicity tests with the study of reproductive function and offspring development in order to obtain comprehensive evidence of the absence of distant adverse effects that may manifest only in the next generation. Comprehensive study of reproductive function, pre- and postnatal offspring development, as a rule, includes the research of a large number of parameters, all of which has a wide range of physiological fluctuations, and the heterogeneous distribution of some parameters' values complicates the interpretation of the results. of the study was to investigate the efficiency of a reduced adaptive potential model in rats, based on decreased diet protein intake, for the use in reproductive toxicity experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!