Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spiking neural networks (SNNs) are considered an attractive option for edge-side applications due to their sparse, asynchronous and event-driven characteristics. However, the application of SNNs to object detection tasks faces challenges in achieving good detection accuracy and high detection speed. To overcome the aforementioned challenges, we propose an end-to-end Trainable Spiking-YOLO (Tr-Spiking-YOLO) for low-latency and high-performance object detection. We evaluate our model on not only frame-based PASCAL VOC dataset but also event-based GEN1 Automotive Detection dataset, and investigate the impacts of different decoding methods on detection performance. The experimental results show that our model achieves competitive/better performance in terms of accuracy, latency and energy consumption compared to similar artificial neural network (ANN) and conversion-based SNN object detection model. Furthermore, when deployed on an edge device, our model achieves a processing speed of approximately from 14 to 39 FPS while maintaining a desirable mean Average Precision (mAP), which is capable of real-time detection on resource-constrained platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.106092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!