Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Breast cancer is the most prevalent malignancy in women. Advanced breast cancer can develop distant metastases, posing a severe threat to the life of patients. Because the clinical warning signs of distant metastasis are manifested in the late stage of the disease, there is a need for better methods of predicting metastasis.
Methods: First, we screened breast cancer distant metastasis target genes by performing difference analysis and weighted gene co-expression network analysis (WGCNA) on the selected datasets, and performed analyses such as GO enrichment analysis on these target genes. Secondly, we screened breast cancer distant metastasis target genes by LASSO regression analysis and performed correlation analysis and other analyses on these biomarkers. Finally, we constructed several breast cancer distant metastasis prediction models based on Logistic Regression (LR) model, Random Forest (RF) model, Support Vector Machine (SVM) model, Gradient Boosting Decision Tree (GBDT) model and eXtreme Gradient Boosting (XGBoost) model, and selected the optimal model from them.
Results: Several 21-gene breast cancer distant metastasis prediction models were constructed, with the best performance of the model constructed based on the random forest model. This model accurately predicted the emergence of distant metastases from breast cancer, with an accuracy of 93.6 %, an F1-score of 88.9 % and an AUC value of 91.3 % on the validation set.
Conclusion: Our findings have the potential to be translated into a point-of-care prognostic analysis to reduce breast cancer mortality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.107943 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!