A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MEP and TEP features variability: is it just the brain-state? | LitMetric

MEP and TEP features variability: is it just the brain-state?

J Neural Eng

Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland.

Published: January 2024

The literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.Corticospinal excitability was measured using motor evoked potential (MEP) peak-to-peak amplitudes elicited with transcranial magnetic stimulation (TMS); cortical responses were studied through TMS-evoked potentials' TEPs features. A TMS-EEG-electromyography (EMG) dataset of 18 young healthy subjects who received 180 single-pulse (SP) and 180 paired pulses (PP) to determine short-intracortical inhibition (SICI) was investigated. To study the effect of different EEG processing, we compared the brain-state estimation deriving from three published methods. The influence of presence of neural oscillations was also investigated. To evaluate the effect of the brain-state on MEP and TEP features variability, we defined the brain-state based on specific EEG phase and power combinations, only in trials where neural oscillations were present. The relationship between TEPs and MEPs was further evaluated.The presence of neural oscillations resulted in more consistent results regardless of the EEG processing approach. Nonetheless, the latter still critically affected the outcomes, making conclusive claims complex. With our approach, the MEP amplitude was positively modulated by the alpha power and phase, with stronger responses during the trough phase and high power. Power and phase also affected TEP features. Importantly, similar effects were observed in both TMS conditions.These findings support the view that the brain state of alpha oscillations is associated with the variability observed in cortical and corticospinal responses to TMS, with a tight correlation between the two. The results further highlight the importance of closed-loop stimulation approaches while underlining that care is needed in designing experiments and choosing the analytical approaches, which should be based on knowledge from offline studies to control for the heterogeneity originating from different EEG processing strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ad1dc2DOI Listing

Publication Analysis

Top Keywords

eeg processing
16
tep features
12
neural oscillations
12
mep tep
8
features variability
8
alpha oscillations
8
corticospinal excitability
8
cortical corticospinal
8
presence neural
8
power phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!