We propose an approach to probe coherent spin-state dynamics of molecules using circularly polarized hard X-ray pulses. For the dynamically aligned nitric oxide molecules in a coherent superposition spin-orbit coupled electronic state that can be prepared through stimulated Raman scattering, we demonstrate the capability of ultrafast X-ray diffraction to not only reveal the quantum beating of the coherent spin-state wave packet but also image the spatial spin density of the molecule. With a circularly polarized ultrafast X-ray diffraction signal, we show that the electronic density matrix can be retrieved. The spatiotemporal resolving power of ultrafast X-ray diffraction paves the way for tracking transient spatial wave function in molecular dynamics involving the spin degree of freedom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c02892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!