The biomineralizing bacterium has attracted considerable interest in the area of geotechnical engineering due to its ability to induce extracellular mineralization. The presented study investigated 's potential to induce the mineralization of alkali-earth metal carbonate coatings on different polymeric 3D-printed flat surfaces fabricated by different additive manufacturing methods. The use of calcium, barium, strontium, or magnesium ions as the source resulted in the formation of vaterite (CaCO), witherite (BaCO), strontianite (SrCO), and nesquehonite MgCO·3HO, respectively. These mineral coatings generally exhibit a compact, yet variable, thickness and are composed of agglomerated microparticles similar to those formed in solution. However, the mechanism behind this clustering remains unclear. The thermal properties of these biologically induced mineral coatings differ from their inorganic counterpart, highlighting the unique characteristics imparted by the biomineralization process. This work seeks to capitalize on the bacterium 's ability to form an alkali-earth metal carbonate coating to expand beyond its traditional use in geoengineering applications. It lays the ground for a novel integration of biologically induced mineralization of single or multilayered and multifunctional coating materials, for example, aerospace applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859896 | PMC |
http://dx.doi.org/10.1021/acsami.3c13665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!