This study was conducted to compare the impact of cinnamon silver nanoparticles (C-Ag-NPs) and cinnamon aqueous extract (CAE) on the total body weight (TBW), body weight gain (BWG), blood count (BC), fasting blood glucose (FBG), triglycerides (TGs), total cholesterol (TC), low-density (LDL-C) and high-density (HDL-C) lipoprotein cholesterol, liver function enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of normal and streptozotocin (STZ) diabetic rats. The CAE was administered to rats at different doses (50.0 and 100.0 mg/kg bw), whereas the C-Ag-NPs were ingested at doses of 25.0 and 50.0 mg/kg bw for 30 days. At the end of the experiment, the administration of high or low dosages of CAE or C-Ag-NPs to diabetic rats significantly reduced the FBG, TC, TG, and LDL-C and significantly increased the HDL-C compared with the diabetic control rats. The highest dose (50.0 mg/kg bw) of the C-Ag-NPs was the most efficient at significantly reducing ( < 0.05) the levels of all the analyzed parameters compared with the CAE. However, the treated and normal rats did not show any hypoglycemic activity after ingesting the CAE or C-Ag-NPs. Such effects were associated with considerable increases in their BWG. The diabetic rats that ingested the CAE or C-Ag-NPs showed a gradual decrease in their FBG, TC, LDL, and TG levels, but they were still higher than those in the normal rats. Furthermore, the C-Ag-NPs and CAE considerably enhanced the hepatic (GPT, GOT, ALP, and GGT) and antioxidant biomarker enzyme activities (SOD, CAT, and GPx) in diabetic rats. Relative to the untreated diabetic control, the C-Ag-NPs were more effective than the CAE in the diabetic rats. The C-Ag-NPs exhibited a protective role against hyperglycemia and hyperlipidemia in the diabetic rats and modulated their liver function enzyme biomarkers and antioxidant enzyme activities more than the CAE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903233 | PMC |
http://dx.doi.org/10.1177/15353702231214258 | DOI Listing |
J Mol Histol
January 2025
Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:
The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (Editor-in-Chief).
Objectives: This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Materials And Methods: Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D).
Iran J Basic Med Sci
January 2025
i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain.
Objectives: While ketone bodies are not the main heart fuel, exercise may increase their uptake. Objectives: This study aimed to investigate the effect of 6-week endurance training and Pyruvate dehydrogenase kinase 4 )PDK4( inhibition on ketone bodies metabolism in the heart of diabetic rats with emphasis on the role of Peroxisome proliferator-activated receptor-gamma coactivator PGC-1alpha (PGC-1α).
Materials And Methods: Sixty male Wistar rats were divided into eight groups: healthy control group (CONT), endurance training group (TRA), diabetic group (DM), DM + EX group, Dichloroacetate (DCA) group, DM + DCA group, TRA + DCA group, and DM + TRA + DCA group.
Iran J Basic Med Sci
January 2025
School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China.
Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).
Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!