Iron(II)-triazole coordination polymers have attracted considerable interest for their synthetic versatility, which allows tuning their spin-crossover (SCO) properties. Embedding SCO solid particles in sponge matrices is a simple, powerful, and generic approach to construct processable SCO materials. Here, we have studied a series of magnetic frameworks based on partial ligand substitution by using different chemical mixtures of two organic ligands, yielding four isostructural coordination polymers. The integration of the hygroscopic SCO material has endowed the composite sponge with the ability to capture moisture under ambient conditions. In particular, not only does a spin-crossover transition during absorption occur, but also a color variation has been achieved by varying humidity. The consequences of cooperativity and the exposed surface of the composite sponge on the spin transition were evaluated and the most promising materials among them were screened. This work provides guiding significance for the fabrication and practical application of spin-crossover-sponge materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03531jDOI Listing

Publication Analysis

Top Keywords

coordination polymers
12
spin-crossover-sponge materials
8
ironii-triazole coordination
8
composite sponge
8
construction screening
4
screening spin-crossover-sponge
4
materials
4
materials based
4
based ironii-triazole
4
polymers ironii-triazole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!