Mitochondria-targeted neutral and cationic iridium(III) anticancer complexes chelating simple hybrid sp-N/sp-N donor ligands.

Dalton Trans

Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.

Published: January 2024

Most platinum group-based cyclometalated neutral and cationic anticancer complexes with the general formula [(C^N)Ir(XY)] (neutral complex: XY = bidentate anionic ligand; cationic complex: XY = bidentate neutral ligand) are notable owing to their intrinsic luminescence properties, good cell permeability, interaction with some biomolecular targets and unique mechanisms of action (MoAs). We herein synthesized a series of neutral and cationic amine-imine cyclometalated iridium(III) complexes using Schiff base ligands with sp-N/sp-N N^NH chelating donors. The cyclometalated iridium(III) complexes were identified by various techniques. They were stable in aqueous media, displayed moderate fluorescence and exhibited affinity toward bovine serum albumin (BSA). The complexes demonstrated promising cytotoxicity against lung cancer A549 cells, cisplatin-resistant lung cancer A549/DDP cells, cervical carcinoma HeLa cells and human liver carcinoma HepG2 cells, with IC values ranging from 9.98 to 19.63 μM. Unfortunately, these complexes had a low selectivity (selectivity index: 1.62-1.98) towards A549 cells and BEAS-2B normal cells. The charge pattern of the metal center (neutral or cationic) and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The study revealed that these complexes could target mitochondria, cause depolarization of the mitochondrial membrane, and trigger the production of intracellular ROS. Additionally, the complexes were observed to induce late apoptosis and perturb the cell cycle in the G/M or S phase in A549 cells. Based on these results, it appears that the anticancer efficacy of these complexes was predominantly attributed to the redox mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03700bDOI Listing

Publication Analysis

Top Keywords

neutral cationic
16
a549 cells
12
complexes
10
anticancer complexes
8
complex bidentate
8
cyclometalated iridiumiii
8
iridiumiii complexes
8
lung cancer
8
cells
7
cationic
5

Similar Publications

Mechanistic study of micropollutants rejection by nanofiltration of a natural water.

Environ Technol

December 2024

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.

A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Nanomaterials effectively alleviate cadmium hazards in soil-plant systems: A meta-analysis.

Sci Total Environ

December 2024

School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Soil cadmium (Cd) contamination is a non-negligible global environmental issue as it may threaten food security and human health through soil-plant interactions. Nanomaterials have a great potential to decrease Cd bioavailability and bioaccumulation, even though the effects have been inconsistent among various studies. Here we compiled data from 137 experiments on the remediation of Cd-contaminated soils by nanomaterials.

View Article and Find Full Text PDF

This study focused on the development of cholesterol-free fusogenic liposomes with different surface charge with the aim of improving biofilm penetration. In vitro assessments of the liposomes included physical stability, biocompatibility, fusion with microbial cells, and the ability to penetrate established biofilms. Using dynamic light scattering, cholesterol-free, fusogenic liposomes were found to be < 200 nm in size with small size distribution (PDI < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!