AI Article Synopsis

  • Soil functionality is vital for ecosystem services, and urbanization significantly alters the microbial composition of soil, impacting sustainable city development.
  • This study focuses on urban flowerbeds in Prato, Italy, using DNA metabarcoding and GC-MS analysis to assess microbial biodiversity and VOC emission profiles.
  • Findings indicate that VOCs are linked to both human activities and biological processes, with notable correlations found between specific microbial communities and VOC patterns, suggesting that microbe-VOC relationships can help evaluate soil quality in urban environments.

Article Abstract

Soil functionality is critical to the biosphere as it provides ecosystem services relevant for a healthy planet. The soil microbial composition is significantly impacted by anthropogenic activities, including urbanization. In this context, the study of soil microorganisms associated to urban green spaces has started to be crucial toward sustainable city development. Microbes living in the soil produce and degrade volatile organic compounds (VOCs). The VOC profiles may be used to distinguish between soils with various characteristics and management practices, reflecting variations in the activity of soil microbes that use a variety of metabolic pathways. Here, a combined approach based on DNA metabarcoding and GC-MS analysis was used to evaluate the soil quality from urban flowerbeds in Prato (Tuscany, Italy) in terms of microbial biodiversity and VOC emission profiles, with the final aim of evaluating the possible correlation between composition of microbial community and VOC patterns. Results showed that VOCs in the considered soil originated from anthropic and biological activity, and significant correlations between specific microbial taxa and VOCs were detected. Overall, the study demonstrated the feasibility of the use of microbe-VOC correlation as a proxy for soil quality assessment in urban soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776942PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23594DOI Listing

Publication Analysis

Top Keywords

soil quality
12
soil
10
volatile organic
8
organic compounds
8
correlation microbial
4
microbial communities
4
communities volatile
4
urban
4
compounds urban
4
urban soil
4

Similar Publications

Excessive heavy metals (HMs) exposure in surface soils may cause non-negligible health risks to human beings; however, the potential health risk assessment of HMs in Yellow River Delta wetland (YRDW) soils has rarely been evaluated. In this study, we sampled surface wetland soils from ten typical functional areas in YRDW, assessed the HMs pollution status, evaluated their potential health risks, stimulated their probabilistic distributions of health risks and analyzed their potential source apportionment using Positive matrix factorization and Monte Carlo simulation. Enrichment factor (EF) and geo-accumulation index (I) indicated significant anthropogenic impacts, particularly in oil-contaminated sites, while Sediment Quality Guidelines (SQGs) comparison results suggested potential ecological risks, especially for As and Ni, which were occasionally above threshold effect levels.

View Article and Find Full Text PDF

Soil contamination by potentially toxic elements (PTEs) poses a significant threat to crop quality and human health, making it a global concern. However, the distribution patterns of PTEs across different land-use types are not well understood. To investigate the relationship between the reduction and retention effects of various ecosystem types on soil PTEs, we analyzed five categories of target elements in 299 soil samples from the southeastern Yunnan Province.

View Article and Find Full Text PDF

Recently, attention has been shifting toward the perspective of the existence of plants and microbes as a functioning ecological unit. However, studies highlighting the impacts of the microbial community on plant health are still limited. In this study, fungal community (mycobiome) of leaf, root, and soil of symptomatic leaf-spot diseased (SS) oil palm were compared against asymptomatic (AS) trees using ITS2 rRNA gene metabarcoding.

View Article and Find Full Text PDF

The growing urbanization process is accompanied by the emergence of new habitats for wildlife, and cities are sometimes seen as refuges for pollinators such as wild bees compared to intensively cultivated rural habitats. However, the contrasting living conditions that combine high fragmentation, exposure to pollutants, and heat island effects, with low pesticide use and potentially high availability of resources, make it difficult to predict the overall effect of urban living on the health of wild bees. Moreover, if the responses of wild bee populations in terms of species richness and diversity have been the focus of many recent studies, individual responses to urbanization have been more rarely investigated.

View Article and Find Full Text PDF

Unlabelled: Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!