Deep learning based models for registration predict a transformation directly from moving and fixed image appearances. These models have revolutionized the field of medical image registration, achieving accuracy on-par with classical registration methods at a fraction of the computation time. Unfortunately, most deep learning based registration methods have focused on scalar imaging modalities such as T1/T2 MRI and CT, with less attention given to more complex modalities such as diffusion MRI. In this paper, to the best of our knowledge, we present the first end-to-end geometric deep learning based model for the non-rigid registration of fiber orientation distribution fields (fODF) derived from diffusion MRI (dMRI). Our method can be trained in a fully-unsupervised fashion using only input fODF image pairs, i.e. without ground truth deformation fields. Our model introduces several novel differentiable layers for local Jacobian estimation and reorientation that can be seamlessly integrated into the recently introduced manifold-valued convolutional network in literature. The results of this work are accurate deformable registration algorithms for dMRI data that can execute in the order of seconds, as opposed to dozens of minutes to hours consumed by their classical counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781426PMC
http://dx.doi.org/10.1007/978-3-031-34048-2_43DOI Listing

Publication Analysis

Top Keywords

deep learning
16
learning based
12
geometric deep
8
registration methods
8
diffusion mri
8
registration
7
learning
4
learning unsupervised
4
unsupervised registration
4
registration diffusion
4

Similar Publications

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.

View Article and Find Full Text PDF

Decoding the elite soccer player's psychological profile.

Proc Natl Acad Sci U S A

January 2025

Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.

Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.

View Article and Find Full Text PDF

Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.

Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.

View Article and Find Full Text PDF

The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs.

J Neuroophthalmol

December 2024

Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!