A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of the genetic variability of durum wheat ( Desf.) in the face of combined stress: water and heat. | LitMetric

Study of the genetic variability of durum wheat ( Desf.) in the face of combined stress: water and heat.

AoB Plants

Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia.

Published: January 2024

The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield () and photosynthetic efficiency () decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, , proline content, and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781440PMC
http://dx.doi.org/10.1093/aobpla/plad085DOI Listing

Publication Analysis

Top Keywords

durum wheat
16
water heat
16
combined stress
12
stress
8
combined water
8
heat stress
8
combined
7
water
5
heat
5
study genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!