A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Dental Zirconium Oxide Ceramics Produced Using Additive and Removal Technology for Prosthodontics and Restorative Dentistry-Strength and Surface Tests: An In Vitro Study. | LitMetric

Background: The aim of this in vitro study was to determine the mechanical and functional properties of zirconium oxide ceramics made using 3D printing technology and ceramics produced using conventional dental milling machines.

Methods: Forty zirconia samples were prepared for this study: the control group consisted of 20 samples made using milling technology, and the test group consisted of 20 samples made using 3D printing technology. Their surface parameters were measured, and then their mechanical parameters were checked and compared. Density, hardness, flexural strength and compressive strength were tested by performing appropriate in vitro tests. After the strength tests, a comparative analysis of the geometric structure of the surfaces of both materials was performed again. Student's -test was used to evaluate the results ( < 0.01).

Results: Both ceramics show comparable values of mechanical parameters, and the differences are not statistically significant. The geometric structure of the sample surfaces looks very similar. Only minor changes in the structure near the crack were observed in the AM group.

Conclusion: Ceramics made using additive technology have similar mechanical and surface parameters to milled zirconium oxide, which is one of the arguments for the introduction of this material into clinical practice. This in vitro study has shown that this ceramic can compete with zirconium made using CAD/CAM (Computer-Aided Design and Computer-Aided Manufacturing) methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779906PMC
http://dx.doi.org/10.3390/ma17010168DOI Listing

Publication Analysis

Top Keywords

zirconium oxide
12
vitro study
12
oxide ceramics
8
ceramics produced
8
printing technology
8
group consisted
8
consisted samples
8
surface parameters
8
mechanical parameters
8
geometric structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!