Utilizing reactive DC magnetron sputtering method, TiN coatings were deposited on the silicon substrates at different nitrogen flows and powers. A study of the X-ray phase composition of the coatings was carried out. The stoichiometric composition of the coatings was determined using energy dispersive x-ray spectroscopy. The structure of the surface, cross-section, and thickness of the coatings were determined using scanning electron (SEM) and atomic force microscopy (AFM). A significant change in the surface structure of TiN coatings was established with changes in deposition power and nitrogen flow. SEM images of cross-sections of all coated samples showed that the formation of coatings occurs in the form of a columnar structure with a perpendicular orientation relative to the silicon substrate. The mechanical properties (elastic modulus and microhardness ) of TiN coatings of the first group demonstrate a maximum at a nitrogen flow of 3 sccm and are 184 ± 11 GPa and 15.7 ± 1.3 GPa, respectively. In the second group, the values of and increase due to a decrease in the size of the structural elements of the coating (grains and crystallites). In the third group, and decrease. Microtribological tests were carried out in 4 stages: at a constant load, multi-cycle for 10 and 100 cycles, and with increasing load. The coefficient of friction (CoF) and specific volumetric wear ω depend on the roughness, topology, and mechanical properties of the resulting coatings. Fracture toughness was determined using nanoscratch and depends on the mechanical properties of TiN coatings. Within each group, coatings with the best mechanical and microtribological properties were described: in the first group-TiN coating at 3 sccm (with (29.6 ± 0.1) at.% N), in the second group-TiN coating at 2 sccm (with (40.8 ± 0.2) at.% N), and in the third group-TiN coating at 1 sccm (c (37.3 ± 0.2) at.% N).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779842 | PMC |
http://dx.doi.org/10.3390/ma17010120 | DOI Listing |
Nanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFLangmuir
December 2024
School of Material Science & Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
The electrodeposition behavior of zinc metal anodes critically correlates with the electrode surface properties. The tendency for inhomogeneous deposition of zinc is more severe, especially under high current density. Herein, the surface structure of zinc and zinc deposition substrates is reconstructed with a uniform metal tin (Sn) coating via a simple evaporation method.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Mechanical and Systems Research Laboratory, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO thin film by electron beam evaporation with ion-assisted deposition technology. The LMR effect can be obtained when the refractive index of the thin film is positive and greater than its extinction coefficient and the real part of the external medium permittivity.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland.
The aim of this work was to obtain homogenous coatings containing chitosan with different concentrations of titanium nitride particles (TiN). The coatings were deposited via an electrophoretic process on an etched medically pure Ti-6Al-4V alloy. As part of the study, the zeta potential of the suspensions used for EPD coating deposition was measured, allowing for the optimization of process parameters and the assessment of suspension stability.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Solid-State Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn-Sb-Dy-O, and Sn-Sb-Dy-Ag-O systems synthesized by the sol-gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!