Microbial fuel cell (MFC) performance is affected by the metabolic activity of bacteria and the extracellular electron transfer (EET) process. The deficiency of nanostructures on macroporous anode obstructs the enrichment of exoelectrogens and the EET. Herein, a N-doped carbon nanowire-modified macroporous carbon foam was prepared and served as an anode in MFCs. The anode has a hierarchical porous structure, which can solve the problem of biofilm blockage, ensure mass transport, favor exoelectrogen enrichment, and enhance the metabolic activity of bacteria. The microscopic morphology, spectroscopy, and electrochemical characterization of the anode confirm that carbon nanowires can penetrate biofilm, decrease charge resistance, and enhance long-distance electron transfer efficiency. In addition, pyrrolic N can effectively reduce the binding energy and electron transfer distance of bacterial outer membrane hemin. With this hierarchical anode, a maximum power density of 5.32 W/m was obtained, about 2.5-fold that of bare carbon cloth. The one-dimensional nanomaterial-modified macroporous anodes in this study are a promising strategy to improve the exoelectrogen enrichment and EET for MFCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779606 | PMC |
http://dx.doi.org/10.3390/ma17010069 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.
Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.
Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!