A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Properties, Microstructure Development and Life Cycle Assessment of Alkali-Activated Materials Containing Steel Slag under Different Alkali Equivalents. | LitMetric

To improve solid waste resource utilization and environmental sustainability, an alkali-activated material (AAM) was prepared using steel slag (SS), fly ash, blast furnace slag and alkali activators in this work. The evolutions of SS content (10-50%) and alkali equivalent (4.0-8.0%) on workability, mechanical strength and environmental indicators of the AAM were investigated. Furthermore, scanning electron microscopy, X-ray diffraction and nuclear magnetic resonance techniques were adopted to characterize micromorphology, reaction products and pore structure, and the reaction mechanism was summarized. Results showed that the paste fluidity and setting time gradually increased with the increase in SS content. The highest compressive strength was obtained for the paste at 8.0% alkali equivalent due to the improved reaction rate and process, but it also increased the risk of cracking. However, SS was able to exert a microaggregate filling effect, where SS particles filling the pores increased the structural compactness and hindered crack development. Based on the optimal compressive strength, global warming, abiotic resource depletion, acidification and eutrophication potential of the paste are reduced by 76.7%, 53.0%, 51.6%, and 48.9%, respectively, compared with cement. This work is beneficial to further improve the utilization of solid waste resources and expand the application of environmentally friendly AAMs in the field of construction engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779984PMC
http://dx.doi.org/10.3390/ma17010048DOI Listing

Publication Analysis

Top Keywords

steel slag
8
slag alkali
8
solid waste
8
alkali equivalent
8
compressive strength
8
properties microstructure
4
microstructure development
4
development life
4
life cycle
4
cycle assessment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!