A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experiment on Compressive Properties and Microscopic Analysis of Sea Sand Geopolymer-Based Recycled Concrete. | LitMetric

For marine and coastal engineering, construction resources have become scarce due to a limited local supply. Sea sand geopolymer-based recycled concrete (SSGRC) is an innovative cementitious material known for its eco-friendly benefits and corrosion resistance. This study explores the mechanical properties of SSGRC. The influences of the replacement rate of mineral slag, alkali activator concentrations, fine aggregate types, and curing ages on the compression strength of SSGRC were studied. The failure mechanism was analyzed using the failure patterns and compressive stress-strain curves. The results show that sea sand had a positive effect on geopolymer-based material. The SSGRC reached peak strength with an alkali activator concentration of 10 mol/L and a mineral slag replacement rate of 60%. The maximum stress and strain increased with an increasing curing age. The ratios of strength to the peak value were 55% and 85% after 1 day and 7 days, respectively. Using SEM, in the last hydration stage, the C-(A)-S-H gel was formed with a dense microstructure, and the geopolymer exhibited a favorable bonding performance. The constitutive models describing the complete stress-strain relationship under compression were developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779603PMC
http://dx.doi.org/10.3390/ma17010028DOI Listing

Publication Analysis

Top Keywords

sea sand
12
sand geopolymer-based
8
geopolymer-based recycled
8
recycled concrete
8
replacement rate
8
mineral slag
8
alkali activator
8
experiment compressive
4
compressive properties
4
properties microscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!