Grain size in rice ( L.) shapes yield and quality, but the underlying molecular mechanism is not fully understood. We functionally characterized (), encoding a RING-type protein that localizes to the cytoplasm. The mutant has fewer but enlarged grains compared to the wild type. is mainly expressed in panicles and developing grains. Grain chalkiness was higher in the mutant than in the wild type, short-chain amylopectin content was lower, middle-chain amylopectin content was higher, and appearance quality was worse. The amylose content and gel consistency of were lower, and protein content was higher compared to the wild type. Rapid Visco Analyzer results showed that the texture of cooked rice changed, and that the taste value of was lower, making the eating and cooking quality of worse than that of the wild type. We used , , and monogenic and two-gene near-isogenic lines to study the effects of different combinations of genes affecting grain size on rice quality-related traits. Our results revealed additive effects for these three genes on grain quality. These findings enrich the genetic resources available for rice breeders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779214 | PMC |
http://dx.doi.org/10.3390/ijms25010589 | DOI Listing |
Phys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFAllergy
January 2025
Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Chemistry, Assam University, Silchar, India.
The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Oxford Nanopore Technologies provides multiplexing options for DNA and cDNA sequencing, but not for direct RNA sequencing. Here we describe a duplexing approach and validate it by simultaneously sequencing the rRNA from wild type and knockout that have differential rRNA modifications, successfully demultiplexing the data using bioinformatics approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!