Atrial fibrillation (AF) is a cardiac arrhythmia caused by electrophysiological anomalies in the atrial tissue, tissue degradation, structural abnormalities, and comorbidities. A direct relationship exists between AF and altered mitochondrial activity resulting from membrane potential loss, contractile dysfunction, or decreased ATP levels. This review aimed to elucidate the role of mitochondrial oxidative mechanisms in AF pathophysiology, the impact of mitochondrial oxidative stress on AF initiation and perpetuation, and current therapies. This review followed the Preferred Reporting Items for Systematic Reviews and the Meta-Analysis Extension for Scoping Reviews. PubMed, Excerpta Medica Database, and Scopus were explored until June 2023 using "MESH terms". Bibliographic references to relevant papers were also included. Oxidative stress is an imbalance that causes cellular damage from excessive oxidation, resulting in conditions such as AF. An imbalance in reactive oxygen species production and elimination can cause mitochondrial damage, cellular apoptosis, and cardiovascular diseases. Oxidative stress and inflammation are intrinsically linked, and inflammatory pathways are highly correlated with the occurrence of AF. AF is an intricate cardiac condition that requires innovative therapeutic approaches. The involvement of mitochondrial oxidative stress in the pathophysiology of AF introduces novel strategies for clinical treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779389PMC
http://dx.doi.org/10.3390/ijms25010535DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
mitochondrial oxidative
12
atrial fibrillation
8
mitochondrial
6
oxidative
6
stress
5
developing pharmacological
4
pharmacological therapies
4
therapies atrial
4
fibrillation targeting
4

Similar Publications

Causal role of ischemic heart disease in ovarian cancer subtypes.

Discov Oncol

January 2025

Department of Cardiovascular Medicine, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, China.

Background: Ischemic heart disease (IHD) may share biological mechanisms with cancer, including ovarian cancer, through pathways such as chronic inflammation and oxidative stress. However, the relationship between IHD and ovarian cancer subtypes remains unclear. This study used Mendelian randomization (MR) to explore potential causal associations.

View Article and Find Full Text PDF

Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.

View Article and Find Full Text PDF

Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.

View Article and Find Full Text PDF

Synergistic effect of canine FGF-21 combined with insulin in the treatment of canine diabetes.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.

Previous studies have shown that FGF-21 can ameliorate hyperglycemia and improve the level of oxidative stress in vivo in diabetic mice. The hypoglycemic effect is safe and lasting, but it takes a longer time to exert its effect. Insulin treatment of canine diabetes takes effect quickly; however, its action time is short, and it is prone to cause hypoglycemia.

View Article and Find Full Text PDF

Platelet-rich plasma alleviates skin photoaging by activating autophagy and inhibiting inflammasome formation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.

Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!