AI Article Synopsis

  • Sepsis from peritonitis triggers an inflammatory response, and mesenchymal stromal cells (MSCs) might help modulate the immune system as a new treatment option.
  • In a mouse study, researchers compared the effects of human adipose mesenchymal stem cells (hASCs) and modified hASCs (enhanced for better inflammation targeting) to see their impact on inflammation during peritonitis.
  • Ultimately, the study found that both standard and genetically modified hASCs were safe and effective treatments, showing no significant differences in anti-inflammatory effects between the two groups when administered directly into the peritoneum.

Article Abstract

Sepsis due to peritonitis is a process associated with an inflammatory state. Mesenchymal stromal cells (MSCs) modulate the immune system due to the paracrine factors released and may be a therapeutic alternative. Three treatment groups were developed in a murine model of peritonitis to verify the effect of human adipose mesenchymal stem cell (hASCs). Additionally, a temporary modification was carried out on them to improve their arrival in inflamed tissues (CXCR4), as well as their anti-inflammatory activity (IL-10). The capacity to reduce systemic inflammation was studied using a local application (peritoneal injection) as a treatment route. Comparisons involving the therapeutic effect of wild-type ASCs and ASCs transiently expressing CXCR4 and IL-10 were carried out with the aim of generating an improved anti-inflammatory response for sepsis in addition to standard antibiotic treatment. However, under the experimental conditions used in these studies, no differences were found between both groups with ASCs. The peritoneal administration of hASCs or genetically modified hASCs constitutes an efficient and safe therapy in our model of mouse peritonitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778615PMC
http://dx.doi.org/10.3390/ijms25010520DOI Listing

Publication Analysis

Top Keywords

transiently expressing
8
expressing cxcr4
8
cxcr4 il-10
8
mesenchymal stromal
8
stromal cells
8
model peritonitis
8
study wild-type
4
wild-type transiently
4
il-10 mesenchymal
4
cells mouse
4

Similar Publications

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

The molecular structure of leaf starch from three cereal crops.

Carbohydr Polym

March 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address:

Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development.

Development

January 2025

Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.

The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.

View Article and Find Full Text PDF

Evidence for gene essentiality in Leishmania using CRISPR.

PLoS One

January 2025

Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.

The ability to determine the essentiality of a gene in the protozoan parasite Leishmania is important to identify potential targets for intervention and understanding the parasite biology. CRISPR gene editing technology has significantly improved gene targeting efficiency in Leishmania. There are two commonly used CRISPR gene targeting methods in Leishmania; the stable expression of the gRNA and Cas9 using a plasmid containing a Leishmania ribosomal RNA gene promoter (rRNA-P stable protocol) and the T7 RNA polymerase based transient gRNA expression system in promastigotes stably expressing Cas9 (T7 transient protocol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!