Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779093PMC
http://dx.doi.org/10.3390/ijms25010485DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
drug delivery
8
evs
5
unraveling multifaceted
4
multifaceted roles
4
roles extracellular
4
vesicles insights
4
insights biology
4
biology pharmacology
4
pharmacology pharmaceutical
4

Similar Publications

Camel milk has a unique composition that sets it apart from other types of animal milk, which has captured the interest of medical and scientific communities. Extracellular vesicles (EVs) mainly contain exosomes (Exos, 30-200 nm) and microvesicles (MVs, 200-1000 nm). Camel milk EVs, particularly Exos, which we named EVs/Exos, have arisen as a fascinating area of scientific inquiry, holding enormous potential for the future of biomedicine due to their anticancer, antibacterial, antidiabetic nephropathy, and immunostimulatory impacts.

View Article and Find Full Text PDF

Understanding the Crucial Role of Seminal Plasma Exosomes in Bull Fertility: A Review.

Reprod Domest Anim

December 2024

Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.

Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.

View Article and Find Full Text PDF

Non-toxic core-shell nanowires for extracellular vesicle scavenging.

Chem Commun (Camb)

December 2024

Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

Extracellular vesicles (EVs) from cancer cells promote abnormal growth in normal cells, potentially leading to cancer proliferation. We developed a nanowire-based EV-elimination device that efficiently eliminated EVs without toxicity. This method restored normal growth in mammary gland cells cultured with breast adenocarcinoma-derived EVs containing medium treated with the device.

View Article and Find Full Text PDF

Enhancing Gene Delivery to Breast Cancer with Highly Efficient siRNA Loading and pH-Responsive Small Extracellular Vesicles.

ACS Biomater Sci Eng

December 2024

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.

Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs.

View Article and Find Full Text PDF

Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!