Due to their unique three-dimensional structure, DNA or RNA oligonucleotide aptamers bind to various molecules with high affinity and specificity. Aptamers, alone or in combination with antibodies, can be used to sensitively quantify target molecules by quantitative real-time polymerase chain reaction (qPCR). However, the assays are often complicated and unreliable. In this study, we explored the feasibility of performing the entire assay on wells of routinely used polypropylene PCR plates. We found that polypropylene wells efficiently bind proteins. This allows the entire assay to be run in a single well. To minimize nonspecific binding of the assay components to the polypropylene wells, we tested various blocking agents and identified methylcellulose as an effective alternative to the commonly used BSA. Methylcellulose not only demonstrates comparable or superior blocking capabilities but also offers the advantage of a well-defined composition and non-animal origin. Our findings support the utilization of aptamers, either alone or in combination with antibodies, for sensitive quantification of selected molecules immobilized in polypropylene PCR wells in a streamlined one-well qPCR assay under well-defined conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779054PMC
http://dx.doi.org/10.3390/ijms25010347DOI Listing

Publication Analysis

Top Keywords

aptamers combination
8
combination antibodies
8
entire assay
8
polypropylene pcr
8
polypropylene wells
8
simplified pcr-based
4
pcr-based quantification
4
quantification proteins
4
proteins dna
4
aptamers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!