Polycondensed Peptide-Based Polymers for Targeted Delivery of Anti-Angiogenic siRNA to Treat Endometriosis.

Int J Mol Sci

Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia.

Published: December 2023

Endometriosis (EM) is a prevalent gynecological disease characterized by the abnormal growth of tissue similar to the endometrium outside of the uterus. This condition is accompanied by the development of new blood vessels in endometriotic lesions. While surgical intervention is effective in removing endometriotic lesions, some patients require multiple surgeries. Therefore, finding non-surgical treatments for EM is of great interest. One of the promising approaches is anti-angiogenic therapy using siRNA-therapeutics to target the expression of the VEGFA gene. Peptide-based polymers have shown promise as siRNA delivery systems due to their biocompatibility and ease of modification. We conducted a study to evaluate the effectiveness of the R6p-cRGD peptide carrier as a non-viral vehicle for delivering siRNA to endothelial cells in vitro and endometrial implants in vivo. We investigated the physicochemical properties of the siRNA-complexes, assessed cellular toxicity, and examined the efficiency of GFP and VEGFA genes silencing. Furthermore, we tested the anti-angiogenic effects of these complexes in cellular and animal models. The transfection with siRNA complexes led to a significant increase in VEGFA gene knockdown efficiency and a decrease in the migration of endothelial cells. For the animal model, we induced endometriosis in rats by transplanting endometrial tissue subcutaneously. We evaluated the efficiency of anti-angiogenic therapy for EM in vivo using anti-VEGF siRNA/R6p-RGD complexes. During this assessment, we measured the volume of the implants, analyzed VEGFA gene expression, and conducted CD34 immunohistochemical staining. The results showed a significant decrease in the growth of endometriotic implants and in VEGFA gene expression. Overall, our findings demonstrate the potential of the R6p-cRGD peptide carrier as a delivery system for anti-angiogenic therapy of EM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778610PMC
http://dx.doi.org/10.3390/ijms25010013DOI Listing

Publication Analysis

Top Keywords

vegfa gene
16
anti-angiogenic therapy
12
peptide-based polymers
8
endometriotic lesions
8
r6p-crgd peptide
8
peptide carrier
8
endothelial cells
8
gene expression
8
anti-angiogenic
5
vegfa
5

Similar Publications

Background And Aims: Hepatocellular carcinoma (HCC) recurrence was previously characterized into four types, and patients with progression/hyper-progression recurrence (type III-IV) have an extremely poor prognosis. However, the immune background of resectable HCC, particularly in patients who experience recurrence, remains underexplored. Therefore, this study aimed to describe the immune landscape of resectable HCC, especially postoperative type III-IV recurrent HCC, and explore potential immune-targeted anti-relapse strategies for treated populations.

View Article and Find Full Text PDF

Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study.

Int J Mol Sci

January 2025

Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).

View Article and Find Full Text PDF

Chronic venous insufficiency (CVI), a chronic vascular dysfunction, is a common health problem that causes serious complications such as painful varicose veins and even skin ulcers. Identifying the underlying genetic and epigenetic factors is important for improving the quality of life of individuals with CVI. In the literature, many genes, variants, and miRNAs associated with CVI have been identified through genomic and transcriptomic studies.

View Article and Find Full Text PDF

Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development.

Genomics

January 2025

Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. Electronic address:

N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult).

View Article and Find Full Text PDF

C-type natriuretic peptide (CNP) can be a new disease-modifying anti-osteoarthritis drug (DMOAD) candidate because intraarticular injection of CNP attenuates both articular cartilage degradation and persistent pain in a rat knee arthritis model. This study aimed to elucidate the underlying molecular mechanisms by which CNP protects the knee joint from osteoarthritic changes. Gene expression analyses indicated that CNP did not interfere with the expression of IL1β -responsive genes in rat primary synovial fibroblasts or the monocytic cell line, RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!