Large Range of a High-Precision, Independent, Sub-Mirror Three-Dimensional Co-Phase Error Sensing and Correction Method via a Mask and Population Algorithm.

Sensors (Basel)

Electrical and Electronic Teaching and Research Section, Basic Department, Aviation University of Air Force, Changchun 130022, China.

Published: January 2024

The emergence of segmented mirrors is expected to solve the design, processing, manufacturing, testing, and launching of space telescopes of large apertures. However, with the increase in the number of sub-mirrors, the sensing and correction of co-phase errors in segmented mirrors will be very difficult. In this paper, an independent three-dimensional method for sub-mirror co-phase error sensing and correction method is proposed. The method is based on a wide spectral modulation transfer function (), mask, population optimization algorithm, and online model-free correction. In this method, the sensing and correction process of each sub-mirror co-phase error is independent of each other, so the increase in the number of sub-mirrors will not increase the difficulty of the method. This method can sense and correct the co-phase errors of three dimensions of the sub-mirror, including piston, tip, and tilt, even without modeling the optical system, and has a wide detection range and high precision. And the efficiency is high because the sub-mirrors can be corrected simultaneously in parallel. Simulation results show that the proposed method can effectively sense and correct the co-phase errors of the sub-mirrors in the range [-50, 50] in three dimensions with high precision. The average RMSE value in 100 experiments of the true co-phase error values and the experimental co-phase error values of one of the six sub-mirrors is 2.358 × 10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781401PMC
http://dx.doi.org/10.3390/s24010279DOI Listing

Publication Analysis

Top Keywords

co-phase error
20
sensing correction
16
correction method
12
co-phase errors
12
co-phase
8
error sensing
8
method
8
mask population
8
segmented mirrors
8
increase number
8

Similar Publications

Piston Error Automatic Correction for Segmented Mirrors via Deep Reinforcement Learning.

Sensors (Basel)

June 2024

Space Optics Department, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

The segmented mirror co-phase error identification technique based on supervised learning methods has the advantages of simple application conditions, no dependence on custom sensors, a fast calculation speed, and low computing power requirements compared with other methods. However, it is often difficult to obtain a high accuracy in practical application situations with this method because of the difference between the training model and the actual model. The reinforcement learning algorithm does not need to model the real system when operating the system.

View Article and Find Full Text PDF

For segmented telescopes, achieving fine co-focus adjustment is essential for realizing co-phase adjustment and maintenance, which involves adjusting the millimeter-scale piston between segments to fall within the capture range of the co-phase detection system. CGST proposes using a SHWFS for piston detection during the co-focus adjustment stage. However, the residual piston after adjustment exceeds the capture range of the broadband PSF phasing algorithm( ± 30μm), and the multi-wavelength PSF algorithm requires even higher precision in co-focus adjustment.

View Article and Find Full Text PDF

Segmented plane mirrors constitute a crucial component in the self-aligned detection process for large-aperture space optical imaging systems. Surface shape errors inherent in segmented plane mirrors primarily manifest as tilt errors and piston errors between sub-mirrors. While the detection and adjustment techniques for tilt errors are well-established, addressing piston errors poses a more formidable challenge.

View Article and Find Full Text PDF

The emergence of segmented mirrors is expected to solve the design, processing, manufacturing, testing, and launching of space telescopes of large apertures. However, with the increase in the number of sub-mirrors, the sensing and correction of co-phase errors in segmented mirrors will be very difficult. In this paper, an independent three-dimensional method for sub-mirror co-phase error sensing and correction method is proposed.

View Article and Find Full Text PDF

Large aperture ground-based segmented telescopes typically use electrical edge sensors to detect co-phase errors. However, complex observing environments can lead to zero-point drift of the edge sensors, making it challenging to maintain the long-term co-phase of the segmented primary mirror using only edge sensors. Therefore, employing optical piston error detection methods for short-term calibration of edge sensors can address the issue of zero-point drift in the sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!