The growth of renewable energy sources presents a pressing challenge to the operation and maintenance of existing fossil fuel power plants, given that fossil fuel remains the predominant fuel source, responsible for over 60% of electricity generation in the United States. One of the main concerns within these fossil fuel power plants is the unpredictable failure of boiler tubes, resulting in emergency maintenance with significant economic and societal consequences. A reliable high-temperature sensor is necessary for in situ monitoring of boiler tubes and the safety of fossil fuel power plants. In this study, a comprehensive four-stage multi-physics computational framework is developed to assist the design, optimization installation, and operation of the high-temperature stainless-steel and quartz coaxial cable sensor (SSQ-CCS) for coal-fired boiler applications. With the consideration of various operation conditions, we predict the distributions of flue gas temperatures within coal-fired boilers, the temperature correlation between the boiler tube and SSQ-CCS, and the safety of SSQ-CCS. With the simulation-guided sensor installation plan, the newly designed SSQ-CCSs have been employed for field testing for more than 430 days. The computational framework developed in this work can guide the future operation of coal-fired plants and other power plants for the safety prediction of boiler operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781167PMC
http://dx.doi.org/10.3390/s24010154DOI Listing

Publication Analysis

Top Keywords

fossil fuel
16
power plants
16
fuel power
12
four-stage multi-physics
8
coal-fired boiler
8
boiler tubes
8
computational framework
8
framework developed
8
boiler
6
fuel
5

Similar Publications

Growing global population, escalating energy consumption, and climate change threaten future energy security. Fossil fuel combustion, primarily coal, oil, and natural gas, exacerbates the greenhouse effect driving global warming through CO emissions. To address such issues, research is focused on converting CO into valuable fuels and chemicals, which aims to reduce noxious CO and simultaneously bridge the gap between energy demands and sustainable supply.

View Article and Find Full Text PDF

Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Plastics are basically long-chain hydrocarbon compound synthesizes from nonrenewable liquid petroleum products. Since plastics have special and variety of features such as easy availability and handling, light weight, energy efficiency, nondegradable nature, cheap, faster production, and design flexibility, it has gained wide popularity in short time period and has become indispensable part of day-to-day life. The increasing usage and production of plastic with exponential rate have resulted in increasing plastic waste disposal problems which may cause adverse effect on environment and human health.

View Article and Find Full Text PDF

Comprehensive Review of CO Adsorption on Shale Formations: Exploring Widely Adopted Isothermal Models and Calculation Techniques.

ACS Omega

December 2024

Western Australia School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenues, Kensington, 6151 WA, Australia.

The continuous use of fossil fuels has a huge impact on climate change because they release CO, which is a major greenhouse gas that causes 70-75% of global warming. Shale reserves could be used to store CO to lower greenhouse gas emissions. This could happen mostly through adsorbed gas, which can make up about 85% of all shale gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!