Full-duplex (FD) and reconfigurable intelligent surface (RIS) are potential technologies for achieving wireless communication effectively. Therefore, in theory, the RIS-aided FD system is supposed to enhance spectral efficiency significantly for the ubiquitous Internet of Things devices in smart cities. However, this technology additionally induces the loop-interference (LI) of RIS on the residual self-interference (SI) of the FD base station, especially in complicated urban outdoor environments, which will somewhat counterbalance the performance benefit. Inspired by this, we first establish an objective and constraints considering the residual SI and LI in two typical urban outdoor scenarios. Then, we decompose the original problem into two subproblems according to the variable types and jointly design the beamforming matrices and phase shifts vector methods. Specifically, we propose a successive convex approximation algorithm and a soft actor-critic deep reinforcement learning-related scheme to solve the subproblems alternately. To prove the effectiveness of our proposal, we introduce benchmarks of RIS phase shifts design for comparison. The simulation results show that the performance of the low-complexity proposed algorithm is only slightly lower than the exhaustive search method and outperforms the fixed-point iteration scheme. Moreover, the proposal in scenario two is more outstanding, demonstrating the application predominance in urban outdoor environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781251PMC
http://dx.doi.org/10.3390/s24010121DOI Listing

Publication Analysis

Top Keywords

phase shifts
12
urban outdoor
12
shifts design
8
smart cities
8
outdoor environments
8
joint beamforming
4
beamforming phase
4
design ris-aided
4
ris-aided multi-user
4
multi-user full-duplex
4

Similar Publications

Background: Identifying subtle changes in the menstrual cycle is crucial for effective fertility tracking and understanding reproductive health.

Objective: The aim of the study is to explore how fundamental frequency features vary between menstrual phases using daily voice recordings.

Methods: This study analyzed smartphone-collected voice recordings from 16 naturally cycling female participants, collected every day for 1 full menstrual cycle.

View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Background: Digital health technology (DHT) has the potential to revolutionize the health care industry by reducing costs and improving the quality of care in a sector that faces significant challenges. However, the health care industry is complex, involving numerous stakeholders, and subject to extensive regulation. Within the European Union, medical device regulations impose stringent requirements on various ventures.

View Article and Find Full Text PDF

Catalytic Assembly of Peptides Mediated by Complex Coacervates.

ACS Nano

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!