Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the recent era, 2D human pose estimation (HPE) has become an integral part of advanced computer vision (CV) applications, particularly in understanding human behaviors. Despite challenges such as occlusion, unfavorable lighting, and motion blur, advancements in deep learning have significantly enhanced the performance of 2D HPE by enabling automatic feature learning from data and improving model generalization. Given the crucial role of 2D HPE in accurately identifying and classifying human body joints, optimization is imperative. In response, we introduce the Spatially Oriented Attention-Infused Structured-Feature-enabled PoseResNet (SOCA-PRNet) for enhanced 2D HPE. This model incorporates a novel element, Spatially Oriented Attention (SOCA), designed to enhance accuracy without significantly increasing the parameter count. Leveraging the strength of ResNet34 and integrating Global Context Blocks (GCBs), SOCA-PRNet precisely captures detailed human poses. Empirical evaluations demonstrate that our model outperforms existing state-of-the-art approaches, achieving a Percentage of Correct Keypoints at 0.5 (PCKh@0.5) of 90.877 at a 50% threshold and a Mean Precision (Mean@0.1) score of 41.137. These results underscore the potential of SOCA-PRNet in real-world applications such as robotics, gaming, and human-computer interaction, where precise and efficient 2D HPE is paramount.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780779 | PMC |
http://dx.doi.org/10.3390/s24010110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!