Arbidol hydrochloride is an antiviral product widely used in Russia and China for the treatment of, among other diseases, influenza. In recent years, it has turned out to be highly effective against COVID-19. However, there is little knowledge about its physicochemical properties and its behavior in the presence of various pharmaceutical excipients, which could be useful in the development of new preparations by increasing its solubility and bioavailability. For this reason, binary mixtures composed of arbidol hydrochloride and selected pharmaceutical excipients such as chitosan, polyvinylpyrrolione K-30 and magnesium stearate were prepared and subjected to differential scanning calorimetry (DSC), thermogravimetry combined with Fourier transform infrared spectrometry (TGA-FTIR) and Fourier transform infrared spectrometry (FTIR) analyses. In order to obtain clarity in the interpretation of the outcomes, chemometric calculations with factor analysis (FA) were used. Additionally, a powder X-ray diffraction (PXRD) and an intrinsic dissolution rate study were performed for arbidol hydrochloride itself and in the presence of excipients. As a result of the study, it was revealed that arbidol hydrochloride may undergo polymorphic transformations and be incompatible with chitosan and magnesium stearate. However, mixing arbidol hydrochloride with polyvinylpyrrolidone K-30 guarantees the obtaining of durable and safe pharmaceutical preparations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780367PMC
http://dx.doi.org/10.3390/molecules29010264DOI Listing

Publication Analysis

Top Keywords

arbidol hydrochloride
24
pharmaceutical excipients
12
factor analysis
8
magnesium stearate
8
fourier transform
8
transform infrared
8
infrared spectrometry
8
arbidol
6
hydrochloride
6
dsc tga-ftir
4

Similar Publications

Porcine epidemic diarrhea virus (PEDV) is a member of the genera that has been associated with acute watery diarrhea and vomiting in swine. Unfortunately, no effective vaccines and antiviral drugs for PEDV are currently available. Reverse genetics systems are crucial tools for these researches.

View Article and Find Full Text PDF

Arbidol hydrochloride is an antiviral product widely used in Russia and China for the treatment of, among other diseases, influenza. In recent years, it has turned out to be highly effective against COVID-19. However, there is little knowledge about its physicochemical properties and its behavior in the presence of various pharmaceutical excipients, which could be useful in the development of new preparations by increasing its solubility and bioavailability.

View Article and Find Full Text PDF

Objective: To study the efficacy and safety of arbidol hydrochloride tablets as a treatment for influenza-like diseases.

Methods: In this multicenter, randomized, controlled, open label study, a total of 412 influenza-like cases were collected from 14 hospitals in seven regions of Hebei Province from September 2021 to March 2022. Patients were randomly divided into two groups.

View Article and Find Full Text PDF

SARS-CoV-2, the novel coronavirus spreading worldwide urges the need to repurpose drugs that can quickly enter clinical trials to combat the on-going global pandemic. A cluster of proteins are encoded for by the viral genome, each assuming a critical role in pathogen endurance inside the host. To handle the adverse circumstances, robust virtual strategies such as repurposing are coming to the fore due to being economical, efficient and rapid.

View Article and Find Full Text PDF

Because of the current COVID-19 outbreak all over the world, the problem of antiviral drugs entering water has become increasingly serious. Arbidol hydrochloride (ABLH) is one of the most widely used drugs against COVID-19, which has been detected in sewage treatment plant sediments after the COVID-19 outbreak. However, there has been no report on the degradation of ABLH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!