In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780730 | PMC |
http://dx.doi.org/10.3390/molecules29010254 | DOI Listing |
BMC Public Health
January 2025
Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia.
Background: In a world confronted with new and connected challenges, novel strategies are needed to help children and adults achieve their full potential, to predict, prevent and treat disease, and to achieve equity in services and outcomes. Australia's Generation Victoria (GenV) cohorts are designed for multi-pronged discovery (what could improve outcomes?) and intervention research (what actually works, how much and for whom?). Here, we describe the key features of its protocol.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Clinical Genetics, Rennes University Hospital, Rennes, France.
Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.
Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.
J Prosthet Dent
January 2025
Assistant Professor, Department of Prosthodontic, College of Dental Medicine, Rangsit University, Phatum Thani, Thailand. Electronic address:
Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.
Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.
ACS Nano
January 2025
Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!