This paper presents a thorough numerical investigation focused on optimizing the efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) based on III-nitride materials. The optimization strategy encompasses manipulating confinement potential energy, controlling hydrostatic pressure, adjusting compositions, and varying thickness. The built-in electric fields in (In, Ga)N alloys and heavy-hole levels are considered to enhance the results' accuracy. The finite element method (FEM) and Python 3.8 are employed to numerically solve the Schrödinger equation within the effective mass theory framework. This study reveals that meticulous design can achieve a theoretical photovoltaic efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) that surpasses the Shockley-Queisser limit. Moreover, reducing the thickness of the layers enhances the light-absorbing capacity and, therefore, contributes to efficiency improvement. Additionally, the shape of the confinement potential significantly influences the device's performance. This work is critical for society, as it represents a significant advancement in sustainable energy solutions, holding the promise of enhancing both the efficiency and accessibility of solar power generation. Consequently, this research stands at the forefront of innovation, offering a tangible and impactful contribution toward a greener and more sustainable energy future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780786PMC
http://dx.doi.org/10.3390/nano14010104DOI Listing

Publication Analysis

Top Keywords

intermediate-band solar
12
hydrostatic pressure
8
efficiency quantum-well
8
quantum-well intermediate-band
8
solar cells
8
cells qw-ibscs
8
confinement potential
8
sustainable energy
8
efficiency
5
efficiency inn/ingan/gan
4

Similar Publications

Anti-Site Defect-Induced Cascaded Sub-Band Transition in CuInS Enables Infrared Light-Driven CO Reduction.

ACS Nano

December 2024

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Photocatalytic CO conversion is a promising approach to simultaneously mitigate climate change and alleviate the energy crisis. However, infrared light, which constitutes nearly half of the solar energy, has not been effectively utilized yet. In this work, we discover a photogenerated charge transition mechanism in CuInS with intrinsic In antisite defects for synergistic utilization of full-spectrum photons.

View Article and Find Full Text PDF

In this study, we investigated the influence of structural parameters, including active region dimensions, electric field intensity, In-composition, impurity position, and potential profiles, on the energy levels, sub-gap transitions, and photovoltaic characteristics of a p-GaN/i-(In, Ga)N/GaN-n (p-QW-n) structure. The finite element method (FEM) has been used to solve numerically the Schrödinger equation. We found that particle and sub-gap energy levels are susceptible to well width, electric field, and impurity position.

View Article and Find Full Text PDF

This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schrödinger equation within the framework of the effective-mass approximation. Our findings reveal that electric and magnetic fields significantly influence the energy levels of electrons and holes, optical transition energies, open-circuit voltages, short-circuit currents, and overall photovoltaic conversion performances of IBSCs.

View Article and Find Full Text PDF

The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In this work, a 4-band k.p-based method was developed for rock-salt quantum dots (QDs) that describes the complete optical properties of arbitrary QD@Host systems, trailblazing the way for the full optoelectronic analysis of quantum-structured solar cells.

View Article and Find Full Text PDF

Phenanthroline-Based Low-Cost and Efficient Small-Molecule Cathode Interfacial Layer Enables High-Performance Inverted Perovskite Solar Cells via Doctor-Blade Coating.

ACS Appl Mater Interfaces

October 2024

Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China.

Perovskite solar cells (PSCs) have recently emerged as highly efficient and cutting-edge photovoltaic technology. In inverted PSCs, challenges are focused on the insufficient interface contact and energy level misalignment between the electron transport layer (ETL) and the metal electrode. Hence, the cathode interfacial layer (CIL) plays a crucial role in regulating energy levels and enabling charge extraction in PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!