Photoluminescence of Argan-Waste-Derived Carbon Nanodots Embedded in Polymer Matrices.

Nanomaterials (Basel)

Innovative Materials for Energy and Sustainable Development (IMED-Lab), Faculty of Science and Technology, Cadi Ayyad University, Av. Abdelkrim Khattabi, B.P. 511, Marrakech 40000, Morocco.

Published: December 2023

In this work, photoluminescent (PL) carbon nano dots (CNDs) prepared from argan waste were embedded in highly optical transparent poly(styrene-co-acrylonitrile) (PSA) and cyclo-olefin copolymer (COC) matrices, which were further processed into thin films. In the first step, the luminescent CNDs were prepared through thermal processing of fine-groundargan waste, followed, in the second step, by direct dispersion in the polymer solutions, obtained by solving PSA and COC in selected solvents. These two polymer matrices were selected due to their high optical transparency, resilience to various environmental factors, and ability to be processed as quality thin films. The structural configuration of the CNDs was investigated through EDX, XPS, and FTIR, while DLS, HR-SEM, and STEM were used for their morphology investigation. The luminescence of the prepared CNDs and resulted polymer nanocomposites was thoroughly investigated through steady-state, absolute PLQY, and lifetime fluorescence. The quality of the resulted CND-polymer nanocomposite thin films was evaluated through AFM. The prepared highly luminescent thin films with a PL conversion efficiency of 30% are intended to be applied as outer photonic conversion layers on solar PV cells for increasing their conversion efficiency through valorization of the UV component of the solar radiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780386PMC
http://dx.doi.org/10.3390/nano14010083DOI Listing

Publication Analysis

Top Keywords

thin films
16
polymer matrices
8
cnds prepared
8
conversion efficiency
8
photoluminescence argan-waste-derived
4
argan-waste-derived carbon
4
carbon nanodots
4
nanodots embedded
4
polymer
4
embedded polymer
4

Similar Publications

Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO Reduction.

Small Methods

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.

Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Neural reuse can drive organisms to generalize knowledge across various tasks during learning. However, existing devices mostly focus on architectures rather than network functions, lacking the mimic capabilities of neural reuse. Here, we demonstrate a rational device designed based on ferroionic CuInPS, to accomplish the neural reuse function, enabled by dynamic allocation of the ferro-ionic phase.

View Article and Find Full Text PDF

Flexible micromachined ultrasound transducers (MUTs) for biomedical applications.

Microsyst Nanoeng

January 2025

Department of Electrical Engineering (ESAT-MNS), KU Leuven, Belgium.

The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!