Solid-solid phase-change materials have great potential for developing compact and low-cost thermal storage systems. The solid-state nature of these materials enables the design of systems analogous to those based on natural rocks but with an extraordinarily higher energy density. In this scenario, the evaluation and improvement of the mechanical and thermophysical properties of these solid-solid PCMs are key to exploiting their full potential. In this study, LiNaSO-based composites, comprising porous MgO and expanded graphite (EG) as the dispersed phases and LiNaSO as the matrix, have been prepared with the aim of enhancing the thermophysical and mechanical properties of LiNaSO. The characteristic structure of MgO and the high degree of crystallinity of the EG600 confer on the LiNaSO sample mechanical stability, which leads to an increase in the Young's modulus (almost three times higher) compared to the pure LiNaSO sample. These materials are proposed as a suitable candidate for thermal energy storage applications at high temperatures (400-550 °C). The addition of 5 wt.% of MgO or 5% of EG had a minor influence on the solid-solid phase change temperature and enthalpy; however, other thermal properties such as thermal conductivity or specific heat capacity were increased, extending the scope of PCMs use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780726PMC
http://dx.doi.org/10.3390/nano14010078DOI Listing

Publication Analysis

Top Keywords

thermophysical mechanical
8
mechanical properties
8
properties linaso
8
thermal energy
8
energy storage
8
linaso sample
8
linaso
5
thermal
5
improved thermophysical
4
mechanical
4

Similar Publications

Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Since the rings of the angular contact ball bearings (ACBBs) are typical highly sensitive quenching thin-walled structure, the microstructure and properties variation of the rings during the heat treatment process are often difficult to be controlled precisely, and then the service life of the bearings is reduced. Therefore, in this study, the combination of the numerical simulation and experimental was carried out during the quenching and tempering process of ACBBs (7008C), the phase transformation of the inner and outer ring during the heat treatment process were explored, and the law of the microstructure evolution and the mechanical properties variation were revealed. Firstly, based on the multi-field coupling theory of temperature, microstructure and stress-strain field, the numerical simulation model of the heat treatment process of the bearing rings was established.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!