Transition metal dichalcogenides (TMDs) have unique absorption and emission properties that stem from their large excitonic binding energies, reduced-dielectric screening, and strong spin-orbit coupling. However, the role of substrates, phonons, and material defects in the excitonic scattering processes remains elusive. In tungsten-based TMDs, it is known that the excitons formed from electrons in the lower-energy conduction bands are dark in nature, whereas low-energy emissions in the photoluminescence spectrum have been linked to the brightening of these transitions, either via defect scattering or via phonon scattering with first-order phonon replicas. Through temperature and incident-power-dependent studies of WS grown by CVD or exfoliated from high-purity bulk crystal on different substrates, we demonstrate that the strong exciton-phonon coupling yields brightening of dark transitions up to sixth-order phonon replicas. We discuss the critical role of defects in the brightening pathways of dark excitons and their phonon replicas, and we elucidate that these emissions are intrinsic to the material and independent of substrate, encapsulation, growth method, and transfer approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780943 | PMC |
http://dx.doi.org/10.3390/nano14010037 | DOI Listing |
Nature
December 2024
Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate.
View Article and Find Full Text PDFNanoscale
January 2025
Departments of Chemistry and Physics, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.
We used a computational method based on (constrained) density functional theory to obtain the photoluminescence spectrum of graphene quantum dots with up to 240 carbon atoms, including the effect of multiphonons. We found that only a few phonon modes couple effectively to the excitons, namely one size- and shape-dependent global mode and two high frequency local modes. The exciton-phonon coupling decreases with increasing size for all structures and has a magnitude in the mid-range, leading to only relatively small multiphonon effects.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University, Marietta, GA 30060, USA.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlGaN films with high Al fractions (60-87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal-organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS).
View Article and Find Full Text PDFACS Photonics
September 2024
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg D-20416, Germany.
Nat Commun
May 2024
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get "dressed", which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!