Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781119 | PMC |
http://dx.doi.org/10.3390/nano14010010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!