To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780749 | PMC |
http://dx.doi.org/10.3390/nano14010004 | DOI Listing |
Odontology
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Natural bone is a self-regenerating nanocomposite made of proteins and minerals. Such self-regenerative capacity can be negatively affected by certain diseases involving the bone or its surrounding tissues. Our study assesses the ability of bone grafting material to regenerate bone in animals who have artificially created critical-sized defects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Faculty of Chemistry, University of Gdansk, Wita Stwosza, 6380308, Gdańsk, Poland.
The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
Despite the unique properties of clay nanocomposites for cardiovascular applications, there are few data on the hemocompatibility of these nanomaterials. This study represents the first comprehensive investigation of the hemo/biocompatibility of clay nanocomposites . Nanocomposite coatings of polylactic acid (PLA)-polyethylene glycol (3 wt %)-Cloisite20A nanoclay (3 wt %) were produced using electrospraying technique as potential drug-eluting stent (DES) coatings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!