The receptor protein tyrosine phosphatase phogrin primarily localizes to hormone secretory granules in neuroendocrine cells. Concurrent with glucose-stimulated insulin secretion, phogrin translocates to pancreatic β-cell plasma membranes, where it interacts with insulin receptors (IRs) to stabilize insulin receptor substrate 2 (IRS2) that, in turn, contributes to glucose-responsive β-cell growth. Pancreatic β-cell development was not altered in β-cell-specific, phogrin-deficient mice, but the thymidine incorporation rate decreased in phogrin-deficient islets with a moderate reduction in IRS2 protein expression. In this study, we analyzed the β-cell response to high-fat diet stress and found that the compensatory expansion in β-cell mass was significantly suppressed in phogrin-deficient mice. Phogrin-IR interactions occurred only in high-fat diet murine islets and proliferating β-cell lines, whereas they were inhibited by the intercellular binding of surface phogrin under confluent cell culture conditions. Thus, phogrin could regulate glucose-stimulated compensatory β-cell growth by changing its binding partner from another β-cell phogrin to IR in the same β-cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780347PMC
http://dx.doi.org/10.3390/nu16010169DOI Listing

Publication Analysis

Top Keywords

pancreatic β-cell
12
β-cell growth
12
β-cell
9
phogrin-deficient mice
8
high-fat diet
8
phogrin
6
phogrin regulates
4
regulates high-fat
4
high-fat diet-induced
4
diet-induced compensatory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!