Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780391 | PMC |
http://dx.doi.org/10.3390/nu16010092 | DOI Listing |
PLoS One
December 2024
Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.
In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.
View Article and Find Full Text PDFPLoS One
December 2024
The Third Faculty of Medicine, Charles University, Prague, Czech Republic.
Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.
Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.
Vet Sci
December 2024
National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China.
The widespread utilization of antibiotic growth promoters (AGPs) boosts the growth rate of food animals and enhances human living standards. Nevertheless, it is accompanied by escalating antibiotic resistance. Consequently, there is an urgent demand to develop novel alternatives to growth promoters.
View Article and Find Full Text PDFVet Sci
December 2024
CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
The Eurasian griffon vulture (), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
Larvae Meal (HILM) has been observed to enhance growth performance and immune function, yet the effects and mechanisms in geese remain less understood. Experiment I included 64 Sichuan White Geese to investigate the optimal additive amount of HILM in diet, and experiment II included 32 Sichuan White Geese to access serum immunoglobulin, spleen immune-related genes, intestinal morphology and gut microbiota at the optimal additive amount of HILM. The results showed that the addition of 1% HILM significantly increased the ADG of Sichuan White Geese ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!