The search for alternatives to petroleum-based thermoplastic polyamide elastomers (TPAEs) has recently drawn great interest. In this study, a bio-massed TPAE, PA12,36, was synthesized using 1,12-dodecanediamine (DDA) and fatty dimer acid (FDA, Pripol1009) precursors via catalyst and solvent-free melt polycondensation. The molecular structure and molecular weight of the PA12,36 were characterized by H NMR, FTIR, and GPC. PA12,36 displayed a low melting temperature of 85.8 °C, an initial degradation temperature of 425 °C, and a glass-transition temperature of 30.4 °C, whereas it sustained satisfactory tensile strength (10.0 MPa) and superior strain at break (1378%). Furthermore, PA12,36 was foamed by supercritical CO, and the cell size, cell density, and porosity were determined. The entangled long-chained FDA component generated a physically crosslinked network, which promoted the melt viscosity of PA12,36 against elongations of foam cell growth and increased foamability significantly. As a result, uniform structured cellular foams with a cell diameter of 15-24 µm and high cell density (10 cells/cm-10 cells/cm) were successfully achieved. The foaming window was widened from 76 to 81 °C, and the expansion ratio was increased from 4.8 to 9.6. Additionally, PA12,36 foam with a physically crosslinked structure presented a better creep shape recovery percentage (92-97.9%) and sturdier dimensional stability. This bio-based PA12,36 foam is a promising candidate to replace petroleum-based thermoplastic elastomer foams for engineering applications, particularly shoe soles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780462PMC
http://dx.doi.org/10.3390/polym16010159DOI Listing

Publication Analysis

Top Keywords

dimensional stability
8
shape recovery
8
petroleum-based thermoplastic
8
cell density
8
physically crosslinked
8
pa1236 foam
8
pa1236
7
cell
5
synthesis high-value
4
high-value bio-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!