The two-step layer-by-layer (LBL) deposition of donor and acceptor films enables desired vertical phase separation and high performance in organic solar cells (OSCs), which becomes a promising technology for large-scale printing devices. However, limitations including the use of toxic solvents and unpredictable infiltration between donor and acceptor still hinder the commercial production of LBL OSCs. Herein, we developed a water-based nanoparticle (NP) ink containing donor polymer to construct a mesoscale structure that could be infiltrated with an acceptor solution. Using non-halogen o-xylene for acceptor deposition, the LBL strategy with a mesoscale structure delivered outstanding efficiencies of 18.5% for binary PM6:L8-BObased LBL OSCs. Enhanced charge carrier mobility and restricted trap states were observed in the meso-LBL devices with optimized vertical morphology. It is believed that the findings in this work will bring about more research interest and effort on eco-friendly processing in preparation for the industrial production of OSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780782 | PMC |
http://dx.doi.org/10.3390/polym16010091 | DOI Listing |
Polymers (Basel)
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
In this paper, the early drying shrinkage coefficients of different hydraulic cement mortars are calibrated through laboratory experiments for moderate-heat Portland cement (MHPC) and low-heat Portland cement (LHPC). By developing an improved mesoscale modeling approach, a 3D highly detailed simulation of concrete was generated, which incorporates the phases of mortar, aggregates, and interfacial transition zone (ITZ). The simulation result is in good agreement with the concrete early drying shrinkage experiment, exhibiting an error of less than 4.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
Addressing irregular bone defects is a formidable clinical challenge, as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration, resulting in suboptimal healing. This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure (macro-, meso-, and nano-scales) and tempered degradation (microscale), intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs. For the hierarchical structure, at the macroscale, it can feature anatomic geometries for seamless integration with the bone defect; The mesoscale pores are devised with optimized curvature and size, providing an adequate mechanical response as well as promoting cellular proliferation and vascularization, essential for natural bone mimicry; The nanoscale textured surface is enriched with a layered double hydroxide membrane, augmenting bioactivity and osteointegration.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!