Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), -methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780964 | PMC |
http://dx.doi.org/10.3390/polym16010086 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany. Electronic address:
Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties.
View Article and Find Full Text PDFJ Food Sci
December 2024
Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China.
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Laboratory for Chemistry and Life Sciences, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan.
Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pd@Pt (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
High-entropy-alloy (HEA) nanocrystals hold immense potential for catalysis, offering virtually unlimited alloy combinations through the inclusion of at least five constituent elements in varying ratios. However, general and effective strategies for synthesizing libraries of HEA nanocrystals with controlled surface atomic structures remain scarce. In this study, a transferable strategy for developing a library of facet-controlled seed@HEA nanocrystals through seed-mediated growth is presented.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2024
School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China. Electronic address:
The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!